Identification of a motor-to-auditory pathway important for vocal learning

<p><span>Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor's song.

Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior

<p><span>Memory-guided behavior requires maintenance of task-relevant information without sensory input, but the underlying circuit mechanism remains unclear. Calcium imaging in mice performing a delayed Go or No-Go task revealed robust delay activity in dorsomedial prefrontal cortex, with different pyramidal neurons signaling Go and No-Go action plans. Inhibiting pyramidal neurons by optogenetically activating somatostatin- or parvalbumin-positive interneurons, even transiently during the delay, impaired task performance, primarily by increasing inappropriate Go responses.

Engrams and circuits crucial for systems consolidation of a memory

<p>Episodic memories initially require rapid synaptic plasticity within the hippocampus for their formation and are gradually consolidated in neocortical networks for permanent storage. However, the engrams and circuits that support neocortical memory consolidation have thus far been unknown.We found that neocortical prefrontal memory engram cells, which are critical for remote contextual fear memory, were rapidly generated during initial learning through inputs from both the hippocampal–entorhinal cortex network and the basolateral amygdala.

Active dentate granule cells encode experience to promote the addition of adult-born hippocampal neurons

<p><span>The continuous addition of new dentate granule cells, exquisitely regulated by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to impact the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca</span><sup>2+</sup><span> imaging to track the real-time activity of individual dentate granule cells in freely-behaving mice.

Neural ensemble dynamics underlying a long-term associative memory

<p><span>The brain’s ability to associate different stimuli is vital for long-term memory, but how neural ensembles encode associative memories is unknown. Here we studied how cell ensembles in the basal and lateral amygdala encode associations between conditioned and unconditioned stimuli (CS and US, respectively). Using a miniature fluorescence microscope, we tracked the Ca</span><sup>2+</sup><span>dynamics of ensembles of amygdalar neurons during fear learning and extinction over 6 days in behaving mice.

Distinct Hippocampal Pathways Mediate Dissociable Roles of Context in Memory Retrieval

<p><span>Memories about sensory experiences are tightly linked to the context in which they were formed. Memory contextualization is fundamental for the selection of appropriate behavioral reactions needed for survival, yet the underlying neuronal circuits are poorly understood. By combining </span><em>trans</em><span>-synaptic viral tracing and optogenetic manipulation, we found that the ventral hippocampus (vHC) and the amygdala, two key brain structures encoding context and emotional experiences, interact via multiple parallel pathways.

Ventral CA1 neurons store social memory

<p><span>The medial temporal lobe, including the hippocampus, has been implicated in social memory. However, it remains unknown which parts of these brain regions and their circuits hold social memory. Here, we show that ventral hippocampal CA1 (vCA1) neurons of a mouse and their projections to nucleus accumbens (NAc) shell play a necessary and sufficient role in social memory. Both the proportion of activated vCA1 cells and the strength and stability of the responding cells are greater in response to a familiar mouse than to a previously unencountered mouse.

Decreasing Striatopallidal Pathway Function Enhances Motivation by Energizing the Initiation of Goal-Directed Action

<p><span>Altered dopamine D2 receptor (D2R) binding in the striatum has been associated with abnormal motivation in neuropsychiatric disorders, including schizophrenia. Here, we tested whether motivational deficits observed in mice with upregulated D2Rs (D2R-OE</span><sub>dev</sub><span> mice) are reversed by decreasing function of the striatopallidal “no-go” pathway.

Calcium Imaging of Basal Forebrain Activity during Innate and Learned Behaviors

<p><span>The basal forebrain (BF) plays crucial roles in arousal, attention, and memory, and its impairment is associated with a variety of cognitive deficits. The BF consists of cholinergic, GABAergic, and glutamatergic neurons. Electrical or optogenetic stimulation of BF cholinergic neurons enhances cortical processing and behavioral performance, but the natural activity of these cells during behavior is only beginning to be characterized. Even less is known about GABAergic and glutamatergic neurons.

Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses

<p><span>Genetically encoded calcium indicators for visualizing dynamic cellular activity have greatly expanded our understanding of the brain. However, owing to the light-scattering properties of the brain, as well as the size and rigidity of traditional imaging technology, </span>in vivo<span> calcium imaging has been limited to superficial brain structures during head-fixed behavioral tasks.